Radical-level Ideograph Encoder for RNN-based Sentiment Analysis of Chinese and Japanese
نویسندگان
چکیده
The character vocabulary can be very large in non-alphabetic languages such as Chinese and Japanese, which makes neural network models huge to process such languages. We explored a model for sentiment classification that takes the embeddings of the radicals of the Chinese characters, i.e, hanzi of Chinese and kanji of Japanese. Our model is composed of a CNN word feature encoder and a bi-directional RNN document feature encoder. The results achieved are on par with the character embedding-based models, and close to the state-of-the-art word embedding-based models, with 90% smaller vocabulary, and at least 13% and 80% fewer parameters than the character embedding-based models and word embedding-based models respectively. The results suggest that the radical embeddingbased approach is cost-effective for machine learning on Chinese and Japanese.
منابع مشابه
Trajectory-based Radical Analysis Network for Online Handwritten Chinese Character Recognition
Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analys...
متن کاملRadical-Based Hierarchical Embeddings for Chinese Sentiment Analysis at Sentence Level
Text representation in Chinese sentiment analysis is usually working at word or character level. In this paper, we prove that radical-level processing could greatly improve sentiment classification performance. In particular, we propose two types of Chinese radical-based hierarchical embeddings. The embeddings incorporate not only semantics at radical and character level, but also sentiment inf...
متن کاملModeling Source Syntax for Neural Machine Translation
Even though a linguistics-free sequence to sequence model in neural machine translation (NMT) has certain capability of implicitly learning syntactic information of source sentences, this paper shows that source syntax can be explicitly incorporated into NMT effectively to provide further improvements. Specifically, we linearize parse trees of source sentences to obtain structural label sequenc...
متن کاملFeature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context
Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...
متن کاملGenerating Chinese Classical Poems with RNN Encoder-Decoder
We take the generation of Chinese classical poem lines as a sequence-to-sequence learning problem, and build a novel system based on the RNN Encoder-Decoder structure to generate quatrains (Jueju in Chinese), with a topic word as input. Our system can jointly learn semantic meaning within a single line, semantic relevance among lines in a poem, and the use of structural, rhythmical and tonal pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017